114 Resolution Strategies

{ﬂR,ﬂP}
{-%,-q}
{-Q,-&}

3. Combination strategies. We know that unit resolution is not complete,
but there are some problems for which it is able to derive the empty
clause, If we combine unit resolution with ordered resolution, does
this make it impossible to prove some things that are provable by unit
resolution atone? If so, give an example. If not, prove that there is no
difference.

4. Combination strategies. QGive a counterexample to show that the
combination of ordered resolution and set of support resolution is not
complete.

5. Map coloring. Cousider the problem of coloring the following map,
using only four colors, such that ne two adjacent regions share the same
color.

This problem can be set up as a constraint satisfaction preblem. Write
down the database and the query.

g R T

CHAPTER 6

Nonmonotonic Reasoning

WE HAVE ALREADY SEEN some indication of the power of the first-order
predicate calculus as a language for expressing declarative knowledge in Al
systems. We can use the predicate caleulus to express any conceptualization
based on objects and their relations in a domain of discourse. Given what
we have presented so far, we might imagine that a typical Al system using
first-order logic would work somewhat as follows. Information that the
system has about its domain is expressed as a finite set A of first-order
formulas. We call A the database or base set of beliefs of the system. To
answer queries or to take appropriate actions, the system typically will
have to decide whether or not some formula ¢ is logically entailed by
ita beliefs. We can imagine that the system will make this decision by
performing logical deductions on A, perhaps by using resolution on the
clause form of AA~¢. (Our notation is simplified by lesting A also stand
for the conjunction of the formulas in the set A.)

Even though this model is quite useful for & variety of tasks requiring
knowledge sbout a domain, it has major limitations. The three most
important ones are:

'(1) Language {probably eny language) cannot capture all that we want
to say about the world. A finite set of sentences can never be more
than an approximate description of things as they really are. Any
general rule that we might care to frame is subject to an unlimited
number of exceptions and gualifications. If we are going to use
language to describe the worid, we will have to use it in a way
that is robust in the face of an ever-expanding set of more highly
articulated statements.

115

1186 Nonmonotonic Reasoning

(2) The inference rules of ordinary logic (such as modus ponens and
the resolution principle) are sound. Thus, deductions from a base
set of beliefs never produce new knowledge about the world. If
¢ logically follows from A, then all the models of 4, including
pur intended interpretation, also are models of ¢. Deriving ¢ in
no way eliminates any of the models and thue ¢ tells us nothing
about the world that was not already deseribed by A. Of course,
we want to be able to manipulate our description of the world so
that implicit facts about it become represented explicitly, and sound
inference rules do just that for us. We also will want, however,
to add formulas to A that say new (or revised) things about the
world, and ordinary logic gives us no hints about how to do that.
We need methods for reasoning with tentative statements because
they are the only ones we are ever going to have. These reasoning
methods will have to anticipate the possibility of later revisions of
the knowledge base.

(3) The logical languages that we have used so far are adequate for cx-
pressing only those statements that we are willing to take as heing
either wholly true or wholly false. Often, we have information about
a situation that is known to be uncertain. For example, we know
that it is likely (but not certain) that it will be sunny in Pasadena
on New Year's Day.

In the next few chapters, we will be concerned with confronting and
overcoming some of these limitations. An important technique involves the
use of nonsound inferences of various kinds. That s, from a database A,
we will allow certain inferences that do not logically follow from A. Often,
these inferences depend globally on all of the sentences in A rather than on
a small subset. In particular, we will be introducing inference technigues
the application of which depends on certain sentences not being in A,
With such inference rules, if another sentence is added to A, an inference
may have to be retracted. For this reason, such infercnce rules are called
nonmonoionic. Ordinary logival inference rules, on the other hand, are
monotonic becanse the set of theorems derivable from premises is not
reduced by adding to the premises.

There are many situations in which it is appropriate for intelligent
systemns to augment their beliefs by new ones that do not logically follow
from their explicit ones. The press of cvents sometimes compels some
action before all the relevant facts are at hand. It would be useful perhaps
for systems to be able to assuine that the beliefs they have presently about
a certain subject are all the beliefs that are important about that subject.
Natural-language dialogues among humans, for cxample, depend on both
the speaker and the hearer using several general augmenting conventions
of this sort. (Example: “He didn’t say John was his brother, so I'll assume
he is not.”)

8.1 The Closed-Worild Assumption 117

Also, as we mentioned earlier, there is a sense in which any attempt
to capture all the knowledge about the real world by a finite set of
sentences i3 fundamentally impossible. As our own knowledge (and that
of science) increases, our conceptnalization of a subject area changes.
Any conceptualization, put forward for certain purposes, is subject to
challenge. Consider, for example, the following sentence about birds: “All
birds fly.” With the obvious intended interpretation, we might express this
as vx Bird(x) = Flies{x). This sentence might be useful for certain
limited purposes, but if we tried to apply it more generally, we might be
confronted by the fact that ostriches, which are birds, do not fly. After
having this problem pointed out to us, we could correct it by changing our
axiom about birds fiying to the followings:

¥x Bird(x) A -Ostrich{x) = Flies(z)

Even this sentence does not accurately capture the real world, however,
because we can imagine several other kinds of birds that do net fly:
baby birds, dead birds, wingless birds, and so on. The list of such
qualifications is very long if not endless, leading us, perhaps, to despair of
using language for knowledge representation. This problem often is called
the gqualification problem. Most universally quantified sentences will have
to include an infinite number of qualifications if they are to be interpreted
as accurate staternents about the world. Yet, in our everyday reasoning,
we humans use sentences that we assume to be truc. What we would
seem to need for our machines is an inference ruie that permits us to make
somewhat temporary, or default, assumptions that can later be revised
when additional qualifications become important.

There are a number of ways to achieve the appropriate uonmonotoenic
effects. In this chapter, we cxplore three methods. In one, we adopt a
convention that allows us to infer that, if we cannot prove a ground atom,
then we can assume its negation. In another, we show how to compute a
formula that can be added to A that restricis the objects that satisfy a
certain predicate to just those that A says must satisfy that predicate. In
a third, we introduce nonmonotonic rules of inference called defauits, and
gshow how they are used to derive default conclusions.

These methods have several potential applications. Through examples
in this and the next chapter, we indicate their utility for making reasonable
assumptions about what can be inferred from a finite set of scntences, We
see these nonmonotonic techniques as promising candidates for extending
the reach of logic beyond some of the limitations we have noted.

6.1 The Closed-World Assumption

Recall that a theory T is complete if cither every ground atom in the
language or its negation is in the theory. Thus, the logical closure of

118 Nonmonotonic Reasoning

the formula P(A) A (P(a) = Q(A)) A P(B) is not a complete theory,
because neither Q(B) nor 2Q(B) is in the theory. One convention for
augmenting a theory is to complete it.

The most straightforward and simple way to complete a theory is
by & convention called the closed-world assumption (CWA). The CWA
completes the theory defined by a base set of beliefs, A, by including
the negation of a ground atom in the completed theory whenever that
ground atom does not logically follow from A. The effect of the CWA is
as though we augmented the base belief set with all the negative ground
literals the positive versions of which cannot be deduced from A. The CWA
is nonmonotonic because the set of augmented beliefs would shrink if we
added a new positive ground literal to A,

We define the effects of the CWA in terms of customary logical notation.
We call our belief set, A, the proper axioms of a theory. The theory, denoted
by T[A], is the closure of A under logical entailment. The CWA augments
T{A] by adding a set, Aggm, of assumed beliefs. The closure under logical
implication of the union of these assumed beliefs with A comprises the
CWA-augmented set of beliefs CWA[A]. The CWA can be stated succinctly
as follows:

e The formula ¢ (constructed from elements of a predefined predicate-
calculus language) is in 7[A] if and only if A = ¢. (This is the
ordinary definition of a theory T[A] in terms of a base set A.)

e =P is in Agum if and only if the ground atom P is not in T[A].
(Agem is a set of added beliefs assumed under the CWA.)

e ¢ is in CWA[A] if and only if {A U Agsm} = ¢. (The augmented
theory, CWA[A], is the closure of all beliefs, explicit and assumed.)

In our example, in which A i3 P(A) A (P(4) = Q(A)) A P(B), the
CWA adds ~Q(B), since A does not logically entail Q(B).

The CWA often is used with database systems. Suppose we have a
database listing pairs of countries that are geographic neighbors:

Neighbor (US,Canada)

Neighbor (US,Mexico)

Neighbor(Mexico,Guatemala)

For such a database, it would be useful to adopt the convention that
countries that are not listed as neighbors are not neighbors. That
convention is an example of the CWA. Without such a convention, we
would have to list explictly all the nonneighbor pairs if we wanted to be
able to answer queries such as, “Are Brazil and Canada neighbors?”

8.1 The Closed-World Assumption 119

Note that the CWA depends on a syntactic feature of a set of
beliefs; namely, whether a positive ground literal can be derived. If we
systematicaily replaced each predicate letter P; by =Q; (defining F; = ~Qy)
the theory would be the same, but the CWA would give different results
with respect to the original predicates. The convention is most efficient
when the “positive facts” are few in number compared to the “negative
facts.” A database designer who uses the CWA will want o conceptualize
the domain in a way that matches this expectation.

We might: ask whether the CWA always results in a consistent augmented
theory, CWA[A). The following example shows that it does not.

Let A contain only the clanse P(A) v P(B). Then neither P(A) nor P(B)
is in T[A), so by the CWA their negations are both in CWA[A]. Together,
however, these negations are not consistent with P(4) v P(B).

The source of this difficulty is that A contained a disjunction of ground
atoms (positive ground literals) but no way to prove any of them. Thus, the
conjunction of their negations, which contradicts the original disjunction,
is in the angmented theory. The following theorem links this difficulty with
the inconsistency of CWA[A]. '

THEOREM 6.1 CWAIA] is consistent if and only if, for every posstive-
ground-literal clause Ly v Ly v...v L, that follows from A, there is also
entailed by A at least one ground literal L; that subsumes it. (Equivalently,
the CWA augmentation CWA[A] of a consistent A is inconsistent if
and only if there are positive ground literals Ly, ..., L, such that A |=
LivEIov.. VL, but, fori=1,...,n, &AKL.)

Proof CWA[A] can be inconsistent only if A U Agey is. Then, by
the compactness theorem of logic, there is a finite subset of Agsm that
contradicts A. Let this subset be {~L;,...,7L,}. Then A implies the
negation of the conjunction of these formulas; that is, & = Ly v...V Ly,
Since each ~L; is in Agum, by the definition of Agym, none of the L; follow
from A. The proof in the other direction is obvious, O

The application of Theorem 6.1 depends critically on the terms that we
allow as part of the language. For example, if the only object constants
in the language are A and B, then the following clauses do not have an
inconsistent augmentation {even though one of them is a disjunction of
positive literals):

P(x) v Q(x)
P(4)
Q(B)

120 Nonmonotonic Reasoning

In this case, the only ground clauses of the form Ly v Lz V...V L, that
can be proved from A are P(A) v Q{A) and P(B) V Q(B) (by universal
instantiation). Each of these is subsumed by one of the clauses in A. On
the other hand, if we also admit the object constant C, we also can prove
P(C) v Q(C)Y, but we can prove neither P(C) nor Q{C) to subsume it, so
the CWA produces an inconsistent augmentation in that case.

In the first case of this example, we limited the object constants of the
language to those that occurred in A, We sometimes also want to make
the assumption that the only objects in the domain are the ones that
can be named using the object and function constants occurring in the
language. This is called the domain-closure assurmption (DCA). I there
are no function constants in the language, the DCA can be written as the
following axiom, the domain-closure axiom:

vx x=t; V x=la V...

where the ¢; are the object constants of the language. (If the language
contained function constants, there would be an infinite number of terms
that could be constructed, and typically the DCA could not be expressed
by a first-order formula.} This axiom makes a strong assumption. It
allows us, for example, to replace any quantifiers by finite conjunctions
and disjunctions; then the belief set would be equivalent to a propositional
combination of ground literals.

Another assumption often used in connection with nonmonotonic
reasoning is the unigue-names assumption. (UNA): 1f ground terms cannot
be proved equal, they can be assumed unequal. The UNA is a consequence
of the CWA; it is merely an application of the CWA to the equality
predicate. The DCA is sometimes used in addition to the CWA to restrict
the augmentation further.

Since it may be difficult to test the conditions of Theorem 6.1, the
following corollary is important. (Recall that a Horn clause is defined
to be one that has at most one positive literal.)

COROLLARY 6.1 If the clause form of A is Horn and consistent, then
the CWA augmentation CWA[A] is consistent.

Proof Suppose the contrary; that is, that A is Horn and consistent
but that CWA[A] is inconsistent. Then, according to Theorem 6.1, we
can deduce from A a ground clause Iy v Ly v...V Ly containing only
positive ground literals no one of which is derivable from A. Thus,
AU {~ly,..-, L.} is inconsistent. However, hecanse A contains only
Horn clauses, it must then be the case that for some i, A A HL; is
inconsistent (see Exercise 3). Or, for some i, A |= L;. But this contradicts
the choice of L;. O

6.1 The Closed-World Assumption 121

Thus we see that an important class of theorics—the so-called Horn
theories- have consistent CWA augmentations. We see from Theorem 6.1,
however, that the condition that A be Horn is not sbsolutely necessary for
the CWA augmentation of A to be consistent.

The CWA is too strong for many applications. We do not always want to
assume that any ground atom not provable from A is false. Weakening this
assumption in the natural way leads to the idea of the CWA wnith respect
to a predicate P. Under that convention, ground atoms in some particular
predicate, P, that are not provable from A are assumed to be false. The
.ass;med beliefs, Aggm, in that case contain only negative ground literals
in P

For example, suppose A is:

v Q{zx) = P(x)
Q{a)
R(B) v P(B)

Applying the CWA to A with respect to P allows us to conclude ~P(B),
because P(B) cannot be concluded from A. That, in turn, allows us also to
conclude R(B) from A. (Unconstrained application of the CWA to A would
have condoned concluding both -R(B)} and -P{(B), which contradict A.)

We also can make the CWA with respect to a set of predicates. In
databage applications, this assumption allows us to assume that certain
relations in the database are complete and others are not. If the set contains
all the predicates in A, then we get the same result as we would have got
with the ordinary CWA.

[t is interesting to note that the CWA with rtespect to a set of
predicates may produce an inconsistent augmentation even when the CWA
with respect to each one of the predicates alone produces a consistent
_emg-mentation. For example, the CWA with respect to the set {P,Q} is
inconsistent with the belief set (PvQ), even though the CWA with respect
to either P or [is consistent with that belief set,

We might be tempted to say that the source of this difficulty is that
(P v Q) is not Horn in the set {P,Q}. (We say that a set of clauses is Horn
in the predicate P if there is at most one positive occurrence of P in each
clause. We say that a set A of clauses is Horn in a set of predicaies IT if
and only if cach of the clauses would be Horn in P after substituting the
letter P for each occurence of any of the letters in IT in the clauses of A.)
Even if a belief set were Horn in a set of predicates, however, the CWA
with respect to the predicates in this sct might produce an inconsistent
augmentation. Suppose A is {P{A}vQ, P(B)v-Q}. This set is Horn in the
set {P}, and making the CWA with respect to the predicates (just P) in {P}
yields both ~P(A) and -P(B}. These, together with A, are inconsistent.

122 Nonmonotonic Reasoning

6.2 Predicate Completion

It happens that we often can express in a single sentence of logic the
assumption that the only objects that satisfy a predicate are those that
must do so—given our beliefs. We will describe several of these methods—

all related but of increasing generality and power.
First consider the simple case in which P(A) is the only formula in A.
P(A) is equivalent to the following expressiomn:

vx x=A => P(x)

Such a formula could be taken to be the “if” half of a definition for P. The
assumption that there are no other objects that satisfy P can then be made
by writing the “only if” half as

vx P(x) = x=4

This half is called the completion formula for P. It makes the explicit
information about P in A complete.

The conjunction of A with the completion formula is called the
completion of P in A, and is denoted by COMP[A: P]. In this case, we
have

COMP[A;P] = (vx P(x) = =) A4

= ¥x P(x}) & x=A

In this example, predicate completion (if augmented by the UNA) produces
the same effect as the CWA with respect to P.

If A contained only two formulas in P, say P(A) and P(B), the completion

formula would be
vx P(x) = x=A vV x=B

Here again, predicate completion of P (together with unique names) has
the same effect as the CWA with respect to P.

If A contains formulas in which a predicate P occurs disjunctively with
other predicates or in which P contains variables, predicate completion is
more complex. In fact, we define predicate completion for only certain
kinds of clauses,

We say that a set of clanses is solitery in P if each clause with a positive
occurrence of P has at most ene occurrence of P. Note that clauses solitary
in P are also Horn in P, but not necessarily vice versa. For example
Q(&) v -P(B) v P(A) is Horn in P, but not solitary in P.

6.2 Predicate Completion 1238

We deﬁm? predicate completion of P only for clauses solitary in P.
Suppose:- A is a set of clauses solitary in P. We can write each of the
clauses in A that contains a positive P literal in the following form:

¥y Q1 AL A Q= P(B)

whertz t is a tuple of terms, [t1,i2,...,£,), and the @; are literals not

containing P. There may be no @y, in which case the clause is simply

P(t). The Q; and £ may contain variables, say the tuple of variables y.
This expression is equivalent to

Yyvx (x=t) A Q1 A...A Q,, = P(x)

where x is a tuple of variables not occurring in ¢+ and (x=f) is an
abbre\.rlatmn for (x;=t; A ... A x,=t,). Finally, since the variables y
occur in only the antecedent of the implication, this expression is equivalent
to

vx (Jy {x=£) A Q1 A...A Q) = P(x)

This way of writing the clause is called the rormal form of the ciausc.
Suppaae there are exactly & clauses (k¥ > @) in A that have a positive P
literal. Let the normal forms of these clauses be

vx By = P(x)
vx Ey = P(x)

vz Ep = P(x)

Each of the E; will be an existentially quantified conjunction of literals, as

_in thF pl:eceding generic case. If we group together these clauses as a single
implication, we obtain

¥ By v Ey v...¥ By = P(x)

Here we have an expression that can be taken as the “if” half of a definition
for P. It suggests the following, “only if,” completion formula for P:

vx P(x) = E, v Ey, v...v E;

124 Nonmonotonic Reasoning

Since the E; do not contain P, the “if” and “only if” parts together can
be thought of as a definition for F:

vx P(x) & B, ¥ Ep V...V Ey

Since the “if” part already is entailed by A, we define the completion of P
in A as

COMPJA; P] =g A A (9% P(x) ¢ Ey V...V Ey)

where the E; are the antecedents of the normal forms of the clauses in A,

as defined previously.
Let us consider a simple example of predicate completion. Suppose A is

¥x Ostrich(z) = Bird(x)
Bird(Tweety)

~0strich(Sam)

{All ostriches are birds; Tweety is a bird; Sam is not. an ostrich.) We note
that A is solitary in Bird. Let us complete Bird in A. Writing those
clauses containing Bird in normal form yields

vx Ostrich(x) v z=Tweety = Bird(x)

The completion of Bird in A is then simply

COMP[A;Bird] = A A (vx Bird(x) < Ostrich(x) v x=Tweety)

(The only birds are ostriches or Tweety.) With the completion formula
added to A (and augmented by the UNA) we could prove, for example,
-Bird(Sam).

What is predicate completion doing for us in this case? A tells us that
Tweety is a bird, that Sam is not an ostrich, and that all ostriches are birds.
Completion of Bird in A is a way of making the assumption that there are
no birds other than those about which A tells us. That is, the only birds
are Tweety and ostriches. Since Bam is not an ostrich, and since the UNA
Jets us assume that Sam is not Tweety, we can conclude that Sam is not a
bird.

If we did not limit A to clauses solitary in P, the completion process
might produce circular definitions for P, which would not restrict the
objects that satisfy P to those that must do so, given A. Sometimes,
we can formally apply the completion process to clauses Horn {(but not
golitary) in J” and still get meaningful results. Consider the following Horn

LSRR i A

6.2 Predicate Completion 125

clauses that describe the factorial relation (we assume implicit universal
quantification):

x=0 = Factorial(x,1)

x#0 A Factorial{Minus(x,1),y) = Factorial(x,Times(x,y))
Writing these expressions in normal form yields

x=0 A z=1 = Factorial(z,z)

(3y x#0 A z=Times(x,y) A Factorial(Minus(x,1},y)) =
Factorial(x,z)

Now we formally perform predicate completion on Factorial (even
though the clauses are not solitary in Factorial). The result is

Factorial(x,z) =
{x=0 A 2z=1) Vv
(3y x#0 A z=Times(x,y) A Factorial(x-1,y})

This result is easily interpreted as a recursive definition of factorial. It
illustrates that limiting predicate completion to solitary clauses is perhaps
unnecessarily restrictive, Not all definitions of a predicatc in terms of itself
are cireular— some are recursive.

There are iwo special cases of predicate completion that give rise
to interesting forms for the completion formulas. Suppose 4 is of the
form (¥x P{z)). Making usc of the atom T, we can write this clause
as (¥x T=P(x)). Completion of P then gives the completion formula
(vx P(x)=T), which is a valid formula and thus does not further restrict
our theory. {Restricting the objects that satisfy P to all objects in the
domain is no restriction.)

On the other hand, if there are no clauses in A that are positive in P,
we can assume any valid one; e, (¥x F=P(x)). Completion of P
then gives the completion formula (vx P(x)=F), which is equivalent to
(vx ~P(x)). In this latter case, A says nothing about there being any
abjects satisfying P, therefore, we assume there are none.

Although in simple cases predicate completion and the CWA have the
same effect, in general they are different. For example, suppose that A
contains the single formula P(A), and that the language also contains
the object constant B. Then the CWA extension includes -P(B), and the
completion formula is (¥x P(x) = (x=A)). These two expressions are not
cquivalent, although ~P (B} plus the DCA entails {(vx P(x)=>(x=4)); and
(¥x P(x)=>(x=4)) plus the UNA entails ~P(B). ([Lifschitz 1985b] derives
general conditions relating these two augmenting conventions.)

126 Nonmonotonic Reasoning

Predicate completion, like the CWA, is nonmonotonic because, if another
clause positive in P were added to 4, the compietion formula for P would
be different. In general, it would be weaker; i.e., the angmented theory
would allow more objects to satisfy P than the original one did. Thus,
some proofs of expressions of the form -P could no longer be obtained.
In our earlier example about birds, if we were to augment A by including
Penguin{x) =Bird(x), then the new completion formula for Bird would
be:

Bird(x) = Ostrich(x) v Penguin(x} v x=Tweety

and we could no longer prove -Bird(Sam) as we could earlier. (Sam might
be a penguin.)

Extending a set of bcliefs by predicate completion preserves their
consistency.

THEOREM 6.2 If A is a consistent set of clauses solitary in P, then the
completion of P in A 13 consistent.

This theorem follows from stronger results, Theorem 6.7 or Theorem 6.8,
given later in the chapter (also without proof).

We also can perform predicate completion of several predicates in
parallel. In parallel predicate completion of a set of predicates, each
predicate in the set is completed separately (without regard for the others),
and the conjunction of these separate completion formulas is added to A.
The completion process for each uses only the original clauses in A and not
the formulas added by the completion process for other predicates. Paraliel
predicate corupletion allows us to restrict the objects that satisfy any of
several predicates to those that are forced to do so by A.

For the several completion formulas to avoid circularity, we must impose
a condition on the way in which the predicates being completed can occur
in A. To motivate this condition, consider the following clauses (which are
solitary in P, @, and R):

Q(x) = P(x)
R{x) = Qi{x)
P(x) = R(x)

Parallel predicate completion of {P,Q,R} would yield:
P(x} & [Q(x) « R(x) < P(x)

which is eircular.

FAMTUAASE L s

CEE T T RN

6.2 Predicate Complation 127

Recall that writing clauses that are solitary in P in their normal forms
allowed us to combine all clauses in A containing a positive P literal into
a single formula of the form

Vx B vV Ey v...v E;, = P(x)
Denoting the antecedent of this implication simply by E gives us
vx E = P(x)

where ' contains ne occurrences of P.

To perform parallel predicate completion of the set IT = {P}, P;, .. ., B}
of predicates in A, we first write those clauses in A containing members of I1
in their normal forms, then combine the clauses containing the same Pjs
into single formulas.

vz Ey = Pi(x)
vx By = Py(x)
Vx By = Py(x)

vx En = P, (x)

Parallel predicate completion is then accomplished by adding to A the
completion formulas (vx P;(x)=E;) fori = 1,...,n. Ta avoid circular
definitions of the P;, we must be able to order the P; such that each E;
has no occurrences of any of {I%, Piyy,...,P.} (and has no negative
occurrences of any of {Py,...,Pi_1}). If this ordering can be achieved,
we say that the clauses in A are ordered in I1. In the next section, we
illustrate parallel predicate completion with an example.

Note that, if A is ordered in II, it also is solitary in cach of the P
mdividually (but not necessarily conversely),

Theorem 6.2, about the consistency of predicate completion, can be
generalized to the case of parallel predicate completion.

THEOREM 6.3 If A is consistent and ordered in 11, then the parallel
completion of Tl in A is consistent.

This theorem is a consequence of extended versions of either Theorem 6.7
or Theorem 6.8, given later in the chapter.

128 Nonmonotonic Reasoning

6.3 Taxonomic Hierarchies and Default Reasoning

Several Al systems have included simple mechanisms to allow a kind of
reasoning called reasoning by default. Since typically birds can fly, for
example, we assume (by default) that an arbitrary bird can fly unless we
know that it cannot, In this section, we deseribe a technique for stating
the typical properties of objects and then show how a variant of parallel
predicate completion can be used to perform default reasoning.

Often, this style of reasoning is applied to taxonomic hierarchies in which
subclasses izherit the propertics of their superclasses unless these properties
are specifically canceled. Suppose, for example, that our beliefs, A, include
the following formulas that define a taxonomic hierarchy:

Thing{Tweety)
Bird(x) = Thing(x)
Ostrich(x) => Bird(x)

Flying-Dstrich(x} = Ostrich(x)

(Tweety is a thing; all birds are things; all ostriches are birds; all flying
ostriches are ostriches.)

This subset of A that defines the taxonomic hierarchy will be denoted
by Ax.

Supposc we also want to include in A statements that describe some of
the properties of the objects in the taxenomic hierarchy. For example, we
might want to say that no things except birds can fly, that all birds except
ostriches can fly, and that no ostriches except flying ostriches can fiy. One
way to do this is with the following formulas:

. Thing(x) A -Bird(x) = -Flies(x)

. Bird{x) A -Dstrich(x) = Flies{(x)

. 0strich(x) A -Flying-Ostrich(x) = -Flies(x)
. Flying-Ostrich(x) = Flies(x)

[P T~ -

The subset of A that describes properties of objects in the hierarchy will
be denoted by Ap. Whether we regard a predicate as defining a taxonomic
kind of object or a nontaxonemic property of an object is left to us. In
this example, we choose to think of flying simply as a property that certain
objects have—not as defining a kind of object.

Here, oxceptions to general rules are listed explicitly in the rules. If
we had exceptions to hirds flying other than ostriches, we would have to
list cach of these exceptions in rule b. Of course, & general commonsense
reasoning system would need to know about other comtruon exceptions,
such as penguins and baby birds. As we mentioned earlier in discussing the
qualification problem, there would be no particular diffienlty in principle

U G G L R

s s L R

SRR L e BT L RGILINATI -

At R

8.3 Texonomic Hierarchies and Default Reasoning 129

with listing all known exceptions in the rule. The problem is that the
system designer cannot really think of el of the exceptions that the system
might later confront—exceptions such as wingless eagles, brain-damaged
gulls, snd roast ducks. Instead of listing all these exceptions, we would
prefer some technique that allows us to say that birds (typically} can
fly unless they are abnormal in some respect—an abnormality shared by
ostriches, penguins, and such. Exceptions that we think of later can then
be simply introduced by conferring this same abnormality on the new
exceptions. Similarly, we would want te say that things (typically) cannot
fly unless they are abnormal in some other respect-—an abnormality shared
by birds, airplanes, and mosquitoes. A hierarchy of exceptions would thus
have to deal with several different kinds of abnormalities. We male these
abnormalities part of the taxonomic hierarchy.

The following rule seems to capture what we want to say about things

in general:
Thing(x) A -~Abi1(x) => -Flies(x)

where Abl is a predicate that has to do with that particular type of
abnormality that must be provably absent if we are to use this general
rule to prove that things cannot fly. Thus, our rule states that things
do not fiy unless they have an abnormality of type 1, say. (We will soon
introduce other types of abnormalities.)

Birds are among those objects that have an abnormality of type L

Bird(x) = Abl(x)

We call this rule an inheritance cancellation rule. The taxonomnic rule
Bird(x) = Thing(x) ordinarily could be used to conclude that birds
inherit the traits of things generally—including the inability to fly (if they
are not abnormal). Cancellation rules, declaring abnormalities, thus block
the inheritance of specified traits, We include them in Ay, the formulas
that define the taxonomic hierarchy,

The designer of a commonsense reasoning system could put in such
information as is available about objects that might have abnormalities
of type 1; e.g., airplanes, certain insects, aud so on. The important feature
of this way of dealing with exceptions is that additional axioms about
abnormalitics can be added at any time. New knowledge about flying
objects can be expressed by adding axioms to the belief set instead of by
having to change them!

Continuing with our example, we express the general knowledge that
birds (typically) can fly by the rule:

Bird(x} A -Ab2(x) = Flies(x)

130 Nonmonotonic Reasoring

The predicate Ab2 is about a type of abnormality the presence of which
in birds prevents us from using this rule to conclude that those birds can
fly. Ostriches are among those objects that have this type of abnormality;
thus, we have another cancellation rule:

Ostrich(z) = Ab2(x)
Ordinarily, ostriches cannot fly:
pstrich(x) A -Ab3(x) = -Flies(x)

The predicate Ab3 is about a type of abnormality the presence of which in
ostriches prevents us from using this rule to conclude that those ostriches
cannot fly. Flying ostriches (if there are such) are among those objects
having this type of abnormality:

Flying-Ostrich(x) = Ab3 (x)

Using this approach, we now have the following formulas in Ay defining
the taxonomic hierarchy:
Flying-Ostrich(zx) = Ostrich(x}
Flying-Ostrich(x) => Ab3(x)
Ostrich(x)} = Bird(x)
Dstrich(x) = A&b2(x)
Bird(x) = Thing(x)
Bird(x) = Abi(x)
Thing (Tweety)
(We include the information that Tweety is a “thing” to illustrate how our

approach can be used to reason nonmonotonically about the properties of
Tweety.)

This taxcnomy is represented graphically by the network of Figure 6.1.
Note that our taxonomy does not have to be a tree. (To allow us to use
parallel predicate completion, which we will do, our taxonomy does have

to be a partial order.}
The properties of objects in the hierarchy are described by the following

formulas in Ap:

Thing(x) A -Abl(x) = -Flies{x)
Bird(x)} A ~Ab2{x) = Flies(x)

TR

P g

%E:.
%,

&
b

3 R SR

6.3 Taxonomic Hierarchies and Default Reasoning 131

Dstrich(x) A -Ab3(x) = -Flies(x)
Flying-Ostrich(z} = Flies(x)

We now perform parallel predicate completion on the set {Abi, Ab2,
Ab3, Flying-Ostrich, Ostrich, Bird, Thing} in just Ay to make the
assumption that the only objects that are things, birds, ostriches, flying
ostriches, or objects that are abnormal in any respect are those that
are forced to be so by Agy. The clauses in Ay have an ordering in
theset {Abl, Ab2, Ab3, Flying-Ostrich, Ostrich, Bird, Thing},so
parallel predicate completion will not result in circular definitions.

In this simple example, we obtain the following completion clauses
(by completing {Ab1, Ab2, Ab3, Flying-Ostrich, Ostrich, Bird,
Thing}, in Ag):

. Thing(x) = Bird(x) VvV x=Tweety
. Bird(x) = Ostrich(x)

. Ostrich{(x) = Flying-Ostrich{x)
. =Flying-Ostrich(x)

AbL(x) = Bird(x)

. Ab2(x) = Ostrich(x)

. Ab3(x) = Flying-Dstrich(x)

N

The only object mentioned is Tweety, and it is a thing, so these clauses
appropriately tell us that there are no things other than Tweety, and
no birds, ostriches, or flying ostriches at all. Also, there are no objects

Abl Thing
Ab2 Bird Tweety
Ostrich Ab3

S @

Flying-Ostrich

Figure 6.1 A taxonomic hierarchy with abnormalities.

132 Nonmonotonic Reasoning

abnormal in any respect. Using the propertics mentioned in Ap, we can
deduce -Flies(Tweety) after first proving -Flying-Ostrich(Tueety),
-Dstrich(Tweety), ~Bird{Tweety), and ~Abl(Tweety).

If we were to add Bird(Tweety) to our taxonomic hierarchy, completion
formula 2 would change to Bird(x) =0strich{x)v{x=Tweety). We would
still be able to prove ~Ab2{Tweety) (but not -Ab1(Tweety)), so we would
then be able to conclude Flies(Tweety), and so on. As the reasoning
system learns about other objects and other ways in which objects might
have various types of abnormalities, the taxonomy changes, the predicate
completion formulas are recomputed as appropriate, and the conclusions
that the system can derive change correspondingly.

We call this process of completing predicates in u subset of A delimited
completion. Tt is important to note that delimited completion of a set of
predicates is not generally the same as completing these same predicates in
the full A. (The reader should work out full completion in this case as an
exercise.) Delimited completion typically produces a stronger angmenting
assumption than wonld be produced by completion of the same predicates
in the full A, but it is an assumption that is often justified and useful. One
must be careful, however, because delimited completion might produce an
inconsistent augmentation (see Exercise 6 at the end of the chapter). Later,
we shall discuss a more general and robust procedure for augmenting beliefs
with default assumnptions of this kind.

6.4 Circumscription

Reviewing what we have said about augmentation conventions so far, we
have seen that the CWA augments a belief set to iuclude the negations of
ground positive literals when thesc ground atoms cannot be proved true.
Predicate completion is defined for belief sets consisting of clanses solitary
in a predicate and augments such belief sets by formulas that state that
the only objects satisfying the predicate are those that must do so, given
the belief set.

Both of these augmenting ideas arc based on a kind of minimization
principle. In the case of predicate completion, the minimality idea is
particularly clear. If that part of A confaining a predicate P to be
completed is written as (¥x) [E=P(x)], then P is completed by the
formula (vx) [P(x)=>E]J. That is, no objects have property P unless &
says they must.

We might like to use the same minimality assumption {i.e., that the
only objects satisfying P are those that must, given A) in cases where 4
cannot be written as a set of clauses solitary in a predicate. For example,
suppose A consists of the single formula (3y P{y)}. What can be said
about the smallest set of objects satisfying P in this case? This formula is
not a clause, so we cannot use predicate completion. We know that there
must be at least one object satisfying P, but there is nothing in A that

TR Hif“f\ﬁ%flr}#

e RIS,

i
5

il

6.4 Circumscription 133

says that there need be more than one. We can assume there is only one
by addiug the formula (Iyvx (x=y) <> P(x)).

Now, suppose A consists of the single clause (P(A) v P(B)). This clause
is not solitary in P, so we cannot use predicate completion here either.
Intuitively, however, it would seem that the formula

{(vz P(x} & z=A) v (¥x P(z) ¢ x=B)

says what we want to say about P being minimized. :

To derive augmentations of this sort for arbitrary belief sets, we must
delve into the minimization process in more detail. In doing so, we define
a process called circumseription that, like predicate completion, involves
computing a certain formula that, when conjoined to A, says that the only
objects satisfying a predicate are those that have to do so, given A.

Circumscription is based on the idea of minimal models. Let M[A]
and M*[A] be two models of A. (You may want to refer to Chapter 2
to review the definition of a model in logic.) We say that M*[A] is no
larger than M[A] in predicate P, writing M*[A] Xp M[A], if (1) M
and M* have the same domain of objects, (2) all other relation and function
constants in A besides P have the same interpretations in M and M*,
but (3) the extension of (the relation corresponding to) P in M* is a
subset of the extension of P in M. That is, if M* <p M, then the set
of objects satisfying P in M™ is a subset of those satisfying P in M. We
write M* <p M if M* <p M and M #£p M™,

There may be models of A that are minimal #n P according to the
ordering %p. M, 18 P-minimel if, for any M <p M, M = M,,,. (As we
shall see later, minimal models do not always exist.) If a model M,; of A
is P-minimal, then no objects satisfy the extension of P except those that
have to do so, given A, We would like to find a sentence ¢p such that,
for any M that is a model of AA¢p, there is no M* that is a model of A
with M* <p M. That is, the models of AAdp are P-minimal models of A.
The sentence ¢p when conjoined to A asserts that there are no objects that
satisfy I” except those that have to do 8o, given A. We call this conjunction
the circumscription of P in A.

To find an expression for ¢p in terms of P and A, we reason as follows.
Let P* be a relation constant of the same arity as P, and let A(P*) be A
with each occurrence of the relation constant P in A replaced by P*. We
note that any model of

(v P7(x) = P(x)) A =(¥x P(x) = P*(x)} A A(PY)

is »ot a P-minimal model of A because, in such a model, the extension
corresponding te P* would be a strict subset of the extension corresponding

134 Nonmonotonic Reasoning

to P (and P* satisfies A). (Again, for brevity, we allow x to be possibly a
tuple of variables.} Therefore, any model of

a((vx P*(x) = P(x)) A ~(vz P(x) = P*(x)) A A(P"))

18 a P-minimal model of A.

Since P* in the preceding expression can be any relation constant of
the same arity as P, the ¢p that we seek is the second-order logic foriula
obtained by universally quantifying over the relation variable Px:

VPx =((vx P*(x) =P(x)) A ~(Vx P(x) =Px(x)) A A(P+))

We call this expression the circumscription formula for P in A, Any
model of the circumscription formula is a P-minimal model of A. Conjoin-
ing the circumscription formula with A itself gives us the circumseription
of Pin A

CIRC[A; P] Zdey A AVP* ((¥Vx Px(x) = P(x))A
¥z P(x) = Px(x)) AA(Px))

Although the use of a second-order formula is unsetthiug (since we have
not described inference techniques for second-order logics), we shall see
that, in many important cases, this formula can be reduced to an equivalent
first-order formula.

Before discussing methods for simplifying the second-order formmla for
circumscription, we shall first rewrite it in some alternative forms.

Distributing the negation over the three conjuncts in the circumscription
formula and then rewriting the resulting disjunction ag an implication yields
the usual form for circumscription:

CIRC[A; Pl = A A (WPx (A(P¥) A (¥x P*{x) = P(x))) =
(¥x P{x) = P*(x)))

We can get an additional perspective by deriving another form of
circumscription. Since the preceding circumscription formula is universally
quantified over P%, it holds in particular for PAP substituted for P»
(where P’ is a relation constant of the same arity as P):

A(PAPDY A (vx P(X) A P'(x) = Px)) =
{vx P(x) = P(x) A P (x))

This formula reduces to

A(PAP'Y = (vx P(x) = P'(x))

WM I S R DOOU S BRI AL

6.4 Clrcumscription 135

Since P’ is arbitrary, this formula says that P is circumscribed if and only
if any alleged strengthening of P (say to P A P') that still satisfies A is no
real strengthening because P would then already imply ' anyway.

It is convenient to abbreviate (vx P*(x)=P{x)) by the expression
P* < P. We also use the abbreviations (P* < P) for ((P* < P)a+(P £
P*}) and (P* = P) for ((P* < P} A (P < P*)). These abbreviations
also help us to remember that, when (vx P*(x) = P(x)),an extension
corresponding to P* is a subset of an extension corresponding to P.

In terms of these abbreviations, we can write the circumscription

formula as

vPr (A(P*¥) A (Px < P)) = (P < Px)
which is equivalent to

¥Px A(Px)} = =(Px < P)

or
~(3P*x A(P*) A (P* < P))

This last form of the circumscription formula makes the intuitively helpful
statement that there can be no Px that, when substituted for P in A, atill
satisfies A and that has a corresponding extension that is a strict subset
of the extension corresponding to P.

There are several cases in which circumscription can be simplified. The
following thearem often is useful:

THEOREM 6.4 Given a predicate P, an arbitrary belief set A(P) (con-
taining the predicate P), and any P’ of the same arity as P but not de-
fined in terms of P, then, if A(P) |= A(P’) A (P’ £ P), CIRC[A; P] =
A{P)A (P =P),

We first discuss the importance of this theorem and then give its proof
and an example of its use. The theorem states that, if we have some
predicate P’ of the same arity as P but not containing P, and if we can
prove A(P') A (P < P), given A, then (P = P’} is equivalent to the
circumscription formula for P in A. The theorem is most often used to
confirm conjectures about circumseription formulas. P’ may contain bound
predicate variables, so the circumscription formula may still be a second-
order formuls; in many cases of interest, however, it will be a first-order
one.

136 Nonmenotonic Reasoning
Proof Assume the conditions of the theorem; namely,
A[P] = AP] A (P < P)
Left to right: Assume CIRC[A; Pj; that is, assume
A(P) A (vPx A[Ps] A (Px < P) = {P < Ps))
Using the condition of the theorem, we then have
A(P) A (P P)
Universal specialization on the circumscription formula yields
APYA (P <P) = (PSP
Modus ponens applied to these last two expressions yields
(P <)

This result, together with (P’ < P), yields (P = P').

Right to left: If the circumscription formula did not follow from
the conditions of the theorem, we would have some Px* such that
A(Px) A (P < P). Assuming P = P’ (the right side of the equivalence
in the theorem), we then have A(Px) A {Px < P'). The conditions of
the theorem, however, state that A(Px) logically entails (P! < P*) -a
contradiction. O

As an example of how this thcorem 1s used, let A be P(A) A
(vx Q(x)=+P(x)). If we were going to perform predicate completion on
these clauses, we would rewrite A as (vx Q(x) v (z=A)=P(x)). Pred-
icate completion would yield the completion formula (vx P{x)=Q(x) v
(x=A)). Since predicate completion was motivated as a technique for min-
imizing the objects that satisfy a predicate, we might suspect that it gives
the same result as does circumscription. We can use Theorem 6.4 to show
that it does in this case.

We let the P’ of the theorem be the conseguent of the completion
formula Q(x) v (x=A). Strictly speaking, we should write I* as (Ax Q(x)
v (x=4)), a lambda expression. Now, to use the theorem, we must prove
that A logically entails A(P) A (P < P).

Substituting (Ax Q(x} v (x=4)) for P in A yields

A(PY=(vx Q(x) = Q(x) v x=A) A (QC4) v A=A)

RITE R

6.4 Clrcumscription 137

We sce that A(F’) is trivially valid. It remains to show that A logically
implies (P’ < P); that is, (¥x §(x) v (x=A)=P(x)), The latter formula,
however, is just the normal form of A. Thus, the conditions of the theorem
are satisfied, and the theorem confirms that CIRC{A; P] is (vx Q(x) v
(x=4) & P(x)).

This example can be generalized to show that predicate completion gives
the saine results as circumscription when A consists of clauses solitary in P,

In many cases of interest in Al, CIRC[A; P] “collapses” to a first-order
formula. (We give some examples later in which it dees not.) The simplest
case in which circumscription is collapsible is when all occurrences of P
in A are positive. (A formula has a positive occurrence of P if P ocours
positively in its clause form; it has a negative occurrence of P if P occurs
negatively in its clause form.)

As an example, consider the case in which A is (Iy P(y}}. P occurs
only positively in A, By manipulating expressions in second-order logic,
it can be shown that the circumscription of P in A is (3yvx (x=y} <
P(x)). Circumscribing P in this case limits the extension of P to a minimal
noneinpty set; i.e., a singleton.

An important case in which circumscription is collapsible can best be
thought of as a simple generalization of the solitary condition used in
defining predicate completion. Earlier, we defined what is meant for clauses
to be solifary in a predicate P. Recall that a clause is solitary in P
if, whenever it contains a positive occurrence of P, it contains only one
occurrence of P. Generalizing this definition, we say that a formula is
solitary in P if and only if it can be written iu the following nermal form:

NI[PIA(E < P)

where N{P] is a formula that contains no positive occurrences of P, E
is a formula that contains no occurrences of P, and F < P is our usual
abbreviation for (vz E(x)= P(x)) (where x might be a tuple of variables).
Note that the normal form of a conjunction of clauses solitary in P is
in the fortn E < P. Thus, solitary clauses are a special case of solitary
formulas.
For solitary formulas in general, we have the following theorem.

THEOREM 6.5 CIRC[N[P] A (E < P);P] = N[E] A (E = P), where
N[E] is N[P] with each occurrence of P repluced by E.

Proof This theorem follows directly from Theorem 6.4. First note that,
since N[P} has no positive occurrences aof P, N[P] A (E < P) logically
entails N[F]. (This entailment can be thought of as a kind of “generalized
resolution.”) Thus, the conditions of Theoremn 6.4 are satisfied. O

138 Nonmonotonic Reasoning

Thus, for solitary formulas, circumseription is collapsible to a first-
order formula. We see that circumscription gives the same result as
predicate completion does in the special case of clauses solitary in . Using
Theorem 6.5, we can compute circumscription for theories not in clause
form, as long as they can be written in normal form.

We illustrate with an example. Let A be given by

3x -0n(A,x) A Dn(A,B)

We want to compute the circumseription of On in A, We can write A in
normal form to show that it is solitary in On:

(3x -On(A,x))} A (Vx¥y x=A A y=B = On(x,y>»)

We identify the first conjunct of this expression as N[On] (it has no
positive occurrences of On}, and the second as (E < On) with F(x,y) =
(x=A) A (y=B). (FE has no occurrences of 0n.) Thus, by the theorem,
CIRC[A;Dn] is

(¥x¥y Onfz,y) € z=A A y=B) A (3x ~(z=B))

(The only thing “on” something is the object denoted by A, and it is on the
object denoted by B, and there is at least one ebject that is not the same
as the one denoted by B.)

Some interesting cornplications arise when attempting circumsceription in
formulas slightly more general than solitary ones are. Consider an example
in which A is

Ostrich{xz) = Bird(x)

Bird(Tweety) Vv Bird(Sam}

We cannot use Thearem 6.5 to compute the circumscription of Bird
in A, because A is not solitary in Bird. Before we attempt circumscription,
however, let us see whether we can guess what sort of augmenting staternent
circumscription might make about Bird. From A, we can guess that there
might be two alternative minimizations of Bird; namely,

e ¥x Bird(x) < Ostrich(x) v x=Tweety
e ¥x Bird(x) < Datrich{x) v x=Sam

The belief set is not sufficiently “definite” to allow us to determine which
one of these might be appropriate. This indefinitencss makes it imposgible
to give a single minimizing Bird. Instead, we can merely say something
abouf the minimization of Bird; namely, that it has to be one or the other

itileeRtits R L

s

6.4 Circumscription 139

of these two expressions. That is, all we can apparenily say about the
minimizing Bird is the following:

(vx Bird(x) <> Dstrich(x) v z=Tweety) v
(¥x Bird(x) # 0Ostrich(x) v x=Sam)

Indeed, we can use circumscription to derive this formula. The general
circumscription formula for Bird in A is

VBird+ A(Bird+#) A (¥x Bird*(x) = Bird(x}) =
{vx Bird(x) = Bird*(x))

Let ug first substitute Dstrich(x)v(x=Tweety) for Bird*(x)}. This yields
(after reduction)

(¥x Ostrich(x) v x=Tweety = Bird(x)) =
{vx Bird(x) = Ostrich(x) v x=Tweaty)

Next, we substitute Ostrich{x)v(x=Sam} for Bird*(x). This yields

(v¥x Ostrich(x) v x=Sam => Bird(x)) =
{vx Bird(x) = Ostrich(x) v x=Sam)

Neither of these formulas has an antecedent that follows from A, but the
disjunction of the antecedents does. That is, from A, we can prove

(vx Ostrich(x) v x=Sam = Bird(x)) v
(vx Ostrich(x) v x=Tweety => Bird(x))

(In fact, A iiself can be written in this form. We first rewrite Bird(Tweety)
and Bird(Sam) as (Vx {x=Tweety) = Bird{(z)) and (vx (x=Sam) =
Bird(x)), respectively. Then, by distributivity, we write the conjunction
of these formulas and (¥x Ostrich(x) = Bird(x)) in the form shown
previously.)

Since the disjunction of the antecedents of instances of the circumscrip-
tion formulas follows from A, the disjunction of the consequents does also.
The disjunction of the consequents, however, is exactly the formula we
guessed would be an appropriate statement to make about the minimizing
Bird in this case.

The interesting point about this example is that we can derive a slightly
more restrictive statement about Bird from the circumseription formula. In
this example, A does not force us to accept a formula about Bird as general
as we have guessed; the perceptive reader may have already noted that the
disjunction of definitions can be tighter. The formula we guessed, although
true in all Bird-minimal models, does allow some non-Bird-minimal models

140 Nonmonotonic Reasoning

as well— in particutar when beth Tweety and Sarn are birds. We will return
to this example after describing how circumscription collapses for a class
of formulas more general than solitary ones are.

Next we consider a more general class of formulas—those we call
separable. A formula is separable with respect 10 a predicate P if any
omne of the following conditions is satisfied:

(1) It has no positive occurrences of P.

(2) Ii is of the form (vx E(x)} = P(x)), wherc x is a tuple of variables
and E(x) is a formula that does not contain P (we again abbreviate
to E < P).

(3) It is composed of conjunctions and disjunctions of separable formu-

Note that this definition implies that formulas that are solitary with
respect to P also are separable with respect to P. Also, as we shall show,
all quantifier-free formulas are separable.

Positive occurrences of P in belief sets of this form are separated into
isolated components, and this separation wnakes possible a collapsed version
of circumscription: -as we shall see.

First, we point out that a rather wide class of formulas can be put
in separable form. In the following pairs of equivalent formulas, the one
preceded by a dot is a version in which separability {by the above definition)
is obvious. (In the first two cases, the fortnulas also are solitary in P.)

(1) P(&a)
e Vx x=A = P(x)
(2) vy P(F(y))
s vx3y x=F(y) = P(x)
(3) Bird(Tweety) v Bird(Sam)
e (Vx x=Tweety = Bird(x)) v (¥x x=Sam = Bird(x))
(4) <any unquantified formula>

s <move negations in and use the method of example 1. to
rewrite any positive occurrences of P>

(5) (vu P(u,A}} v (Vu P{u,B))
e (vuvx x=A = P(u,x)) v (Yuvx x=B = P(u,x))

However, (¥u P{u,A) v P{(u,B)) is nof separable with respect to P
because it cannot be writien as a propositional combination of separable
formulas.

Although our definition of separability can easily be used to check

whether or not a formula is separable (taking into account equivalences such

S—

BRI RIS e e e

8.4 Circumscription 141

as those in the preceding list), it is not obvious what this definition might
have to do with circumscription. It happens that there is a rormal form
for separable formulas—somewhat like the normal form used in defining
solitary formulas. We describe this normal form next and then show how
it is used to compute circumscription,

From the definition of separability, it is straightforward to show that
every formula separable with respect to P is equivalent to 2 formula in the
following normal form with respect to P:

VNP A (B: < P))

t

where each E; is a formula that has no occurrences of P, and each N;{P]
ig a formula that has no positive occurrences of P.

We obtain this standard form from any conjunction or disjunction of
(separable) formulas by distributivity and by applications of the following
rules:

(§=2P) A (Y=>P)={(pVy)=>P
(¢p=>P) v (4=>P) = (pAy)=>P
(¢p==P) =TA (¢=F)
p=¢A(F2P)

“(The last two rules are sometimes needed to ensure that each disjunct m

the normal form has N; and E; terms. Use of these rules gives a T for IV
and an F for E;. In this case, when writing (E; < P) in its expanded form,

we write (vx F == P(x)).)
H A is in normal form for P, then the circumscription of P in A is
collapsible to a first-order formula, as defined in the following theorem.

THEOREM 6.6 Suppose A is separable with respect to P and has normal
form with respect to P given by

V[M[P] A (E; < P)]

Then the circumscription of P in A i3 equivalent {o

V[De A (P = Ey)

where D); is
NiE) A A AINSIE;) A (B < By
J#Ed '

142 Nonmonotonic Reasoning

and each N|E] 15 N[P) with all oceurrences of P replaced by F.

(Recall that the expanded version of (F; < E;)is(B; < E)A-(F; < £
which, further expanded, is (vx E;(x)=FE;(x))A~(vx E;(x) =E;(x)).)

To demonstrate that circumscription implies a formula of the form
V[N[E] A (P = E)] requires only a simple generalization of the proof
of Theorem 6.5. To show that the extra conjuncts can be included in D;
is somewhat more difficult. These extra conjuncts esscntially allow us to
omit from the disjunction of definitions for P those disjuncts that would
be redundant under certain conditions and given the other disjuncts. (The
theorem is proved in [Lifschitz 1987b)].)

We will illustrate the role of the D; by some examples later.

In computing circumseription, the result of Theerem 6.6 simplifies in
some special cases. If the normal form has only one disjunct, then we have
the special case of a formula solitary in P, and D is NI[E]. Or, if all the N;
are T, then I becomes

N(E: < Bj) v-(E; < E,)
i

Suppose, for example, that A is P(A} v P(B). We rewrite this in normal
form for P:

(T A (Vx x=4 => P(x))) v (T A (¥x x=B = P{x}})
Here, the normal form has two disjuncts. Dy and Dy are, respectively,
(Vx x=A = x=B) v (3y y=B A -(y=4))
and
(vz x=B = x=4) V (Jy y=4 A -(y=B))
which are both true, se the circumscription formula is equivalent to
(Vx P(x)} € x=4) v (¥z P(x) <« x=1)
(In computing the D; for this case, it is helpful to use the equivalence
(vx (x=A)=P(x)) « P(A).)
In the last example, the D; “disappeared,” and we were left with a
simple disjunction of definitions for P. To illustrate how the D; can act to
restrict these digjunctions, consider the following example. Let A be given

by P(A) v (P(B) A P(C)). In normal form, A is

(TA (V2 x=A = P(x))) vV (T A (¥x x=B v x=C = P(x)))

8.4 Circumscription 143
Thus,
Ni=N,=T
E, = (Ax x=4)
Ez = (Ax x=B v x=C)
Dy=T

Dy = A=B=C v (A4B A A#C)

and Theorem 6.6 gives

CIRC{A;P] = (vx P(x) ® x=A) Vv
((¥x P(x) # x=B v x=C) A
(A=B=C v (A#B A A#C)))

When (4=B=C), the first disjunct suffices, so this formula simplifies to
CIRC[A;P] = (¥x P(x) <> x=A) V
((vz P(x) < x=B V x=C) A (A#B A A#C))

This example nicely illustrates the role of the D;. In this case, they tighten
the definitions by taking into consideration the possibility that A may be
equal to one of B,C. (If A were equal to one of B,C, then A = P(4), and
circumscription would yield simply (vx P(z) & (x=4)).) :

Let us now reconsider the example that we discussed earlier when we
attempted to guess the result of circumscription. In that example, A was

given by
(vx Dstrich(x) = Bird(z)) A (Bird(Tweety) V Bird(Sam))
The normal form is

(T A (vx Ostrich(x) v x=Tweaty => Bird(x))) v
(T A (vx Ostrich(x) v x=Sam = Bird(x)))

Here again, the D; do not, disappear. After some manipulation, we derive

Dy = San=Tweety v -Dstrich(Sam) v Ostrich(Tweety)
Which, after the making the UNA, becomes

-0strich(Sam) v Dstrich(Tweety)

and
D, = Tweety=Sam v -Ostrich(Tweety) v Ostrich(Sam)

144 Nonmonotonic Reasoning

which, again after the UNA is
-0strich(Tweety) v Ostrich(Sam)

Using these values in Theorem 6.6 yields

CIRC[A;Bird] = ({¥x Bird(x) % Dstrich(x) v z=Tweety) A
(-Ostrich{(Sam) v Ostrich(Tweety)}) v
({vx Bird(zx) <« Dstrich(x) v x=Sam) A
(-Dstrich(Tweety) v Dstrich(Sam)})

The circumscription is more restrictive than is the formula we had
guessed earlier. Circumscription says that there are two alternative
“minimal definitions” of Bird; namely, either something is a bird if it
is an ostrich or Tweety (and that definition need be a possibility only
if Sam is not an ostrich or if Tweety is an ostrich), or something is a
bird if it is an ostrich or Sam (and that definition need be a possibility
only if Tweety is not an ostrich or if Sam is an ostrich). In our guess
eartier, we did not narrow our definition as much as we might have; e.g.,
in the case in which Sam was an ostrich and Tweety was not. In that
case, a minimal definition of Bird does not really need to include the
possibility of conferring “birdhood” on Tweety (in order to satisfy A)
because Bird(Tweety) v Bird(Sam) is satisfied by virtue of Sam being
an ostrich.

In sll the cases considered so far, we were able to construct a first-order
formula the addition of which to A achieved the effect of circumseribing a
predicate in A. There are cases, however, in which circumcription does not
collapse to a first-order formula. Here is an example: Suppose A contains
the single formula

(vuvy Qu,v) = P(u,v)) A (vuvvew P{u,v) A P(v,w) = P(u,w))

In this case, the difficulty in saying that A expresses all and the only
information about P is that A says quite a bit about P. It says that P is
{at least) the transitive closure of (). To circumscribe P in A would require
saying that P is identically the transitive closure of Q, and this cannot be
expressed in a first-order formula. One way of saying this, of course, is by
the circumscription formula itself:

(vP%) (Yuvv Q(u,v) = Px{u,v))
A(Vuvyvw Pxiu,v) A P#{v,w) = Px(u,w))
A(yuvy Px{u,v) = P(u,v))
= (VYuvv P(u,v) = Px(u,v))

6.4 Cireumseription 145

Besides involving a second-order quantifier, this formula is not in the
form of a definition for P, We can use Theorem 6.4 to rewrite the
circumscription formula in its equivalent definitional form. We leave it
to the reader to verify that the following expression for P’ satisfies the
conditions of Theorem 6.4:

P(x,y) @ (vPx (Vovv Q{u,v) = P*{(u,v))
A(Vuvevw (P(u,v) A Px({v,w) = Ps(u,w)) = P*(x,y)))

Theorem 6.4 then states that circumscription is equivalent to the following
definition for P:

vuvy P(u,v) <« P'(u,v}

Another example of the insufficiency of a first-order formula to express
circumseription comes from the algebraiv axioms for natural numbers.

Suppose A is
NN(O) A (¥x NN(x) = NN(S(x)))

That is, 0 is a nonnegative integer and the successor of every nonnegative
integer is a nonnegative integer. Circumseribing NN in A produces an
expression equivalent to the usual second-order formula for induction:

VHN* (NN*{0) A (vx NN*(x) = NN»x(S(x)})}
A (vx NN=(x) = NN{x))
= (vx NN(x) = NN*(x))

Replacing NN+ (x) in this expression by [NN'(x} A NN(x}] allows us to
write

VHN' NN (0) A (vx NN'(x) = NN'(S{x)))
= (vx NN{x) = NN'(x))

which is closer to the usual induction formula.

The preceding two examples had belief sets that were neither positive
nor separable in the predicates being circumscribed, and therefore it is not
surprising that circumscription was not collapsible to first-order formulas
in those cases.

146 Nonmonotonic Reasoning

It is also possible for A to have no minimal models. Consider the
following set of formulas:

dx WN(x) A (vy NN(y) = -(x=S()))
¥z NN(x) => NN(S(x))
YaVy S(x)=5(y} = x=y

One interpretation of these formulas involves the claims that there is a
number that is not the successor of any number, that every number has
a successor that is a number, and that two numbers are equal if their
successors are equal. One interpretation for NN is that any integer greater
than k satisfies NN. A “smaller” interpretation is that any integer greater
than k + 1 satisfies NN—and 80 on. Thus, there is no NN-minimal model
for A. Since there is no NN-minimal model, we might expect that the
circumscription of these formulas in NN is inconsistent, and indeed it is. (If
the circumscription formula had a medel, that model would be a minimal
model of the formulas.)

Various sufficient conditions have been established for the circumscrip-
tion of a consistent belief set to be consistent. We state some of the results
here without proof.

THEOREM 6.7 If a belief set A is consistent and universel, then the
circumscription of P in A is consistent. (A sel of formules is said to be
universal if either it s a set of clauses or if the conjunctive normal form
of each of its formulas contains no Skolem funciions.)

THEOREM 6.8 If a belief set A is consistent and separable with respect
to P, then the circumscription of P in A is consistent,

Since sets of clauses are universal and since circumscription of P reduces
to predicate completion of P in clauses solitary (and thus separable) in P,
Theorem 6.2 follows from either Theorem 6.7 or Theorem 6.8. (Theorem 6.3
follows from versions of these theorems extended to a more general case of
circumscription, discussed in Section 6.7.)

Theorems 6.7 and 6.8 apply to two different kinds of formulas; namely,
universal and separable ones. These two classes are instances of a common
general class— the elmost universal formulas. A formula is almost universal
with respect to P if it has the form (Vx)p, where x is a tuple of object
variables, and ¢ does not contain positive oceurrences of P in the scope
of quantifiers. Every universal formula is, of course, almost universal with

T EE
P

e B

ST S

Soapeienns sy

G TR ETE v 52a B TR T ST 4 e - 1 18

6.5 More Genera! Forms of Circumseription 147

respect to any P. It is not difficult to show that any formula that is
separable with respect to P also is almost universal with respect to P.
Theorems 6.7 and 6.8 are thus each a spectal case of Theorem 6.9.

THEOREM 6.9 If a belief set & is consistent and almgsﬂ universal with
respect to P, then the circumscription of P in [\ is consistent.

6.5 More General Forms of Circumscription

There are more general versions of circumscription that produce stron.ge_r
results. First, instead of minimizing only a single predicate, we can mini-
mize a set of predicates. The parallel circumscription of {P,,Ps,...,Pn}
in A is given by the same formula as hefore, except that we now let P
stand for a tuple of predicates:

CIRC[A; P} = A(P) A ~(3P*x A(P*) A (Pxr< P))

where P* is a tuple of predicate variables of the same arities as B,
(P* < P) is an abbreviation for (P+ < P) A ~{P < P#), and (Px < P)
is (P+1 < PL)A...A (P*n £ Py}

Rewriting yields:

CIRC|A; P| = A(P) A (vP (A(P*) A (Px < P)) = (P <P+))

Parallel circumscription is not really any more difficult to compute thap
is ordinary, single-predicate circumscription. Theorem 6.4, for exa:mple, is
easily generalized to deal with this case. In fact, when all the predicates in
the tuple P oceur positively in A, we have Theorem 6.10.

THEOREM 6.10 If all occurrences of Py, Pe,...,Pn in & are positive,
then CIRC|A; P] is equivalent to

N
A\ CIRC[A; P]

=1

(This theorem is stated without proof in [Lifschitz 1986¢), and is proved in
[Lifschitz 1987b}.)

As an example, we apply Theorem 6.10 to compute the parallel
circumseription of {P1,P2} in (vx P1(x) v P2(x)). Bach of P1 and P2
occur positively in A, so the parallel circumseription is just the conjunction
of the individual circumscriptions of P1 and P2. Since each of CIRC[A;P1]
and CIRC[A;P2] is (Vx P1(x) ¢ -P2(x)), their conjunction is also.

148 Nonmonotonic Reasoning

The definitions of formulas solitary or separable in P extend naturally
to the case in which P is a tuple of predicates. For exampie, a formula A
is solitary in o tuple of predicates P if it can be writien in the form
N[P| A (E < P), where N[P] has no positive occurrences of any member
of P, and no member of E has any oceurrences of any member of P.
Theorems 6.5 and 6.6 (interpreting P as a tuple of predicates) can then
also be used to compute parallel circumscription.

For parallel circumscription, we can state a stronger result than would
be obtained by extending Theorem 6.5 to fornmlas selitery in a tuple of
predicates. Generalizing on the definition given in Section 6.2 of clauses
ordered in P, we say that a formula is orderedin P = {P, P,,..., Py} if
it can be written in the form:

N[PIA{E, S P)A(E;s S P)A...A(Ex < Py)

where N[P) has no positive accurrences of any of the predicates in P, and
each E; has no occurrences of any of { P, P41, - .., Py} and has no negative
occurrences of any of {Fy,..., -1}

Using this definition, we have the following theorem.

THEOREM 6.11 Suppose A s ordered in P and can be written in the
form N[P] A (E1 < Pl) A (Ez{Pll < Pg] Ao A (EN{P}_,PQ,. --;PN-—I] <
Py) (with no positive occurrences of the P; in N and no occurrences of
B, ...,Py in E;).

Then the parallel circumscription of P in A i3 given by

CIRC[A; P] = N[Ey,...,En] A (Py = E)) A (P = E3[Eu)) A....
A{Py = Ex[Ey,...,En}

The proof is analogous to that of Theoremn 6.5 and, like it, is based on
Theorem 6.4,

Note that parallel predicatc completion for clauses ordered in P is a
special case of parallel circumscription.

Another generalization of circumnscription allows other predicates to
“vary” in addition to those being minimized. That is, we suppose that
the extensions of these variable predicates can be changed during the
minimization process to allow the predicates being cirewmscribed to have
extensions even smaller than they would have otherwise. This means that
an object will be allowed to satisfy one of the variable predicates (to
satisfy A), so that it does not have to satisfy a predicate being minimized
(to satisfy A). Which predicates should be allowed tov vary depends on the
purpose of the circumscription process; the decision is part of what we call
the circumseription policy. The usual situation is that we are interested in
knowing what is the effect of the circumscription of one predicate, P, (or

B R AR

8.5 More General Forms of Circumscription 149

set of predicates) on some other variable predicate, Z, {or set of predicates).
We want circumscription to minimize the number of objects satisfying P,
even at the expense of allowing more or different objects to satisfy Z, the
variable predicate. After defining circumscription with variable predicates,
we will give exampies of how this process is used.

Suppose P is a tuple of predicates to be minimized and Z (disjoint
from P) is a tuple of predicates. The parallel circumscription of P
in A(P; Z), with predicates Z also allowed to vary, is

CIRC[A; P; Z] = A(P; Z) A ~(3P+3Zx A(P¥;2%) A (Px < Py

where P+ and Z* are tuples of predicate variables (of the same arities as P
and Z, respectively), and A(P;Z+) is the belief set expressed as a single wit
with all occurrences of P replaced by P* and all occurrences of Z replaced

by Z*.
Rewriting yields

CIRC[A; P; Z)

= A(P; Z) A (WP#V2Zx (A(Px;Z¢) A (Px < P)) = (P <P+})

= A(P; Z) A (WPx (I2x (A(Px;Z+) A(Px< P)) = (P £ Px)))
= A(P; Z) A CIRC[(32* A(P; Zx)); Pl

From this form, we see that the parallel circumseription of P in A(P; Z)
with Z allowed to vary during the minimization is the same as ordinary
parallel circumnscription of P in (32 A[P;Z+]). The main difficulty now
is how to handle the second-order quantifier in (3Z* A[P;Zx]).

This problem can be dealt with if A is solitary, separable, or ordered
in Z. Recall, for example, that if A is solitary in Z, it can be written
as N[2Z] A (E < Z), where N[Z] is a formula that contains no positive
occurrences of (any elements of) Z, and E is a formula that eontains no
occurrences of (any elements of) Z. It is straightforward to show that
(32% N[z« A (E < Z+)) = N[E), where N[E] is N[2#] with E substituted
for Z#.

These results establish the following theorem for the case in which A is
solitary in Z.

THEOREM 6.12
CIRC[N(Z) A (E < 2); P; Z] = N(2) A (E < Z) A CIRC[N(E); P]

where N has no positive occurrences of Z, and E has no occurrences of Z.
E, P, and Z can be tuples of predicates.

150 Nonmonotonic Reasoning

COROLLARY 6.2
CIRC[E, A (Ez < Z); P; Z] = By A (E; < Z) A CIRC|E; P
where neither By nor Ey has any occurrences of Z. (That is, in this case

varying Z lets us drop the clause (Ex < Z) from A when compubing the
circumseription formula.)

A simple default reasoning example will illustrate the effects on circum-
scription of letting a predicate vary. Let A be
vx Bird(x) A -Ab(x) => Flies(x)
vx Ostrich(x) = Ab(x)

Ordinary circumscription of Ab in A gives us

CIRC[A; Ab]
= A A {¥x Ab{x) < Ostrich(x) v (Bird(x) A -Flies(x}))

{The only abnormal things are either ostriches or birds that do not fly.)
+ A tighter characterization of Ab can be obtained by leiting Flies vary.
We see that we can use Corollary 6.2 to write

CIRC|A; Ab; Flies] = A A CIRC[(vx Ostrich(x) = Ab(x));Ab]
= A A (¥x Ab(x) < Ostrich(z))

(The only abunormal things are ostriches. Allowing Flies to vary lets us
rle out the possibility that birds might not fly.)

As a more complex example, consider the taxonomic hierarchy we used
earlier ta illustrate delimited predicate completion. We repeat the formulas
used in that exarmple:

Flying-Ostrich(x) = Dstrich(x)
Flying-Ostrich(x) = Ab3(x}
Dstrich(z) = Bird(x)

Ostrich(x) = Ab2(x}

Bird(x) = Thing(x)

Bird(x) = Abi(x)

Thing{Tweety)

Ostrich(x) A =-Ab3(x) = -~Flies(x)

8.5 More General Forms of Circumscription 151

Thing(x) A -Abl(x) = -Flies(x)
Bird(x} A -Ab2(x) = Flies(x)

Default reasouing can be accomplished by parallel circumscription of all
predicates except Flies, but leiting Flies vary. We lef Flies vary because
we are willing to Jet it take on any value required in the minimization of the
other predicates. In being unconcerned about the value of Flies, we can
use the entire belief set A in the minimization process (rather than just
the taxonomic part used in delimited completion) to achieve the default
assumptions that we want.

Thus, we circumseribe A (as before} in the predicates {Flying-Ds-
trich, Ostrich, Ab3, Bird, Ab2, Thing, Abl}, letting Flies vary as
well. In applying the procedure for parallel circumscription, we note first
that A is solitary in Flies. To see this, observe that all the preceding
clauses except the last one have no positive occurrences of Flies, and the
antecedent of the last clause has no cccurrence of Flies. Thus, we can use
Theorem 6.12 and substitute Bird(x) A -Ab2(x) for Flies(x} in all but
the last clause of the preceding set to yield

Flying-Ostrich(x) = Ostrich(x)

Flying-Ostrich(x} = Ab3(x)

Ostrich(x) = Bird(x)

Qstrich(zx)} = Ab2(x)

Bird(x) = Thing(x}

Bird(x) => Abi(x)

Thing(Tweety)

Dstrich(x) A -Ab3{x) => ~(Bird{(z) A -Ab2(x))

Thing(x} A -Ab1(x) = ~(Bird(zx} A =-Ab2(x))}
The last two clauses are subsumed by the fourth and sixth clauses, so the
last two clauses can be eliminated. The circumscription we want can then
be obtained by ordinary parallel circumseription of {Flying-Ostrich,
Ostrich, Ab3, Bird, Ab2, Thing, Abi} in the conjunction of the first
seven clauses (without any predicates variabie).

Since these clauses are ordered in {Flying-Ostrich, Ostrich, Ab3,

Bird, Ab2, Thing, Abi}, we can circumscribe by parallel predicate
completion to obtain the following completion clauses (just as before):

1. Thing(x) = Bird(x) v x=Tweety
2. Bird(x) =+ Ostrich(x)
3. Ostrich(x) = Flying-Ostrich(x)

152 Nonmonatonic Reasoning

4, ~Flying-0Ostrich(x)

5. Abl{x) = Bird(xz)

6. Ab2(x) = Ostrich(z}

7. Ab3(x) = Flying-Ostrich{x)

6.6 Default Theories

We also can deal with the problem of nonmonotonic reasoning by defining a
Ingic that uses nonstandard, nonmonotonic inference rules. Let us call these
inference rules defeult rules, and the resulting theories default theories.

A default rule is an inference rule used to augment A under certain
specified conditions, which we will soon describe. If D is a set of such
rules, we denote an angmentation of A (there may be more than one),
with respect to D, by £[A, D]. (As before, augmentations include A and
are closed under ordinary deduetion.} Defauit rules are written in the form

a(z) : flz)
¥()

where z is a tuple of individual constant schemna variables, and «, 3, and v
arc wif schemata. (In running text, we write this rule as a{z) : f(z)/v(z).)

The expressions above the line specify conditions on £[A, D] that,
if satisfied, permit (roughly speaking) the inclusion in £[A, D} of the
consequent below the line. A default rule is interpreted as follows: If
there is an instance, Xy, of for which the ground instance a{Xy) follows
from £]A, D] and for which 8{Xq) is consistent with £[A, D}, then £[A, D)
includes v(Xq).

The rules are called defaull rules because they are useful in expressing
belicfs about statements that are typically, but not necessarily aiways, true.
For example, we might express the belief that birds typically fly by the
default rule Bird(x) : Flies(zr) / Flies(x). That is, if z is a bird, and
if it is consistent to believe that z can fly, then it can be believed that
z can fly {or z can fly “by default.”) If A contained only the formulas
Bird(Tweety) and Ostrich{x)=-Flies(x), then £[A, D] would contain
Flies(Tweety). If we added to A the formula Dstrich(Tweety), use of
the default rule would be biocked because Flies (Tweety) is not consistent
with the new A. Thus, default theories are nonmonotonic.

Qur description of how default rules augment a theory may have been
misleadingly simple because default theories may have more than one
default rule, and rules may interact. The precise definition of £[A, Dj
in terms of A and a set of default rules, I, must take into account the
contributions of all of the default rules plus the closure of £[A, D] under
ordinary deduction. As we shall sec, these interactions operate such as
sometimes to warrant the existence of more than one augmentation.

6.6 Default Theories 153

Something like the CWA with respect to a predicate P can be formulated
using a default inference rule as follows:
i AP(x)
-|P (.I)

That is, if it is consistent to believe an instance of -P(x), then that
instance of -P(x) may be believed. There is a difference, however, between
the effects of the CWA with respect to P and a default theory with this
default. The CWA permits inferring an instance of ~P{z) if that instance
is consistent with A. The default rulé permits it only if the instance is
consistent with £[A, D). Since there may be other default rules contributing
to £[A, D), the two techniques can lead to different augmentations.

Most applications of default rules involve a special case in which default
rules take the form a(z) : 7(z)/y(x). These are called normal default rules,
and theories using them are called normal defauit theories. The CWA-type
default rule we mentioned is an example of a normal default rule.

(It also is possible to define more general default rules. Consider one of
the form afz) : B1(z), B2(z), .. ., Pu(z)/~(z), the interpretation of which is
that, if a ground instance n(Xy) follows from £[A, D] and if each of the
Bi(Xp) is separately consistent with £[A, D), then ¥(Xy) is in £[A, D]. This
rule is different. from one of the form a{x) : B1{z) A Bo{z) A... A Bu(z)/v(z),
because the conjunction may be inconsistent with £[A, D], whereas each
conjunct may be separately consistent.)

Defanlt theories have a number of interesting properties. (Some of
these are particular to normal default theories.) We state, without proof,
some of the more important properties here, and illustrate themn with some
examples.

(1) Just as circumscription sometimes does not produce a unique
definition for a predicate, a default theory may have more than
one augmentation. Consider, for example, the following (normal)
default rules:

:'ﬂf-l&
BB

Now, if A is simply {AvB}, then there are two possible augmentations
of A; namely, {AvB, -A} and {AvB, -B}. Whereas the CWA,
with respect to both & and B, would have produced an inconsistent
augmentation, our default rules in this example give ua two choices.
We may select either one as an appropriate augmentation of our
heliefs.

{2) The union of the two augmentations of the preceding example
is inconsistent. In fact, we have the following result: If a

154 Nonmonotonic Reasoning

normal default theory has distinct angmentations, they are mutually
inconsistent.

(3) There are default theories with no augmentations. Consider the
default :A/-A. If A is empty, so is £[A, D]. However, see (4).

(4) Every normal default theory has an augmentation.

(5) A default theory can have an inconsistent augmentation if and only
if A itself is inconsistent. Since one can prove anything from an
inconsistent augmentation and since augmentations (like theories)
are closed under ordinary deduction, if a default theory has an
inconsistent augmentation, this is its only augmentation.

(6) If D and D' are sets of normal default rules such that D' C D, then
for any £[A, D'] there is an £[A, D] such that £[A, D] € £[A, D).
Thus, we say that normal default theories are semimonotonic.
Adding new normal default rules does not require the withdrawal of
beliefs, even though adding new beliefs might.

After having specified a set of default rules, how are we to use them to
perform the kind of nonmonotonic reasoning inherent in their definitions?
Typically, we must decide whether or not the initial beliefs A and the
default rules D warrant including some arbitrary formula ¢ among the
augmented beliefs. That is, we must determine whether or not there is an
augmentation £[A, D] that includes the formula ¢.

We limit our definition of default proofs to the case of normal defanlt
theories, (The computation of augmentations for nonnormal default
theories can be extremely complex; in fact, it is not even known yet what
might be an appropriate proof theory for nonnormal defaults.) Informally,
a default proof of ¢ given A and D is just like an ordinary proof of
¢ from A, except that the (normal) default rules can be used as rules
of inference. The use of a default rule must, in strict accordance with
its definition, make the necessary consistency check before inferring its
consequent. This test can be performed at the time of rule application in
forward proofs. Backward proofs might best be done in two passes—first
ignoring the consistency checks to find potential chains of inferences, and
then performing the consistency checks, in forward order, on the default
rules in a chain.

Suppose, for example, that D consists of the following two de-
fault rules: Bird(z):Flies(z)/Flies(z) (by default, birds can fly),
and FC(x):Bird(x)/Bird(z) (by default, feathered creatures are birds).
If A contains only the statement FC(Tweety), then there is a default
proof of Flies(Tweety). If, however, A confains instead the state-
ments Ostrich(Tweety), Ostrich(x) = -Flies(x), and Ostrich(x)
= FC(x), then there is no default proof of Flies(Tweety), because
the rule instance Bird(Tweety):Flies(Tweety)/Flies(Tweety) cannoi
be used consistently.

6.7 Bibliographical and Historical Remarks 155

Because default rules interact in complex ways, one musi be careful
about how knowledge is expressed. An illustrative instance of the sort
of knowledge-representation difficulty that might arise is provided by the
fact that default rules can be transitive. Suppose, for example, we have
D = {D(z):A(x) /A(z), A(z):E(x)/E(z)}. We might interpret these
expressions as saying: Typically, high-school dropouts are adults; and,
typically, adults are emmployed. One of the consequences of these two
rules also could be obtained by the combined rule D(x):E(z}/E(z}, the
corresponding interpretation of which would be: Typically, high-school
dropouts are employed. Although we might assent to the first two rules,
we would not necessarily want to use the combination.

This unwelcome transitivity can be blocked in one of two ways.
We could change the second defaunlt rule to the nonnormal rule A(z):
[-D{z) A E(z)]/E(z). Nonnormal defaults do not enjoy the simple and
desirable properties of normal defaults, however. We often can block
transitivity by a more careful formulation using only normal defaults.
In our example, because, typically, adults are not high-school dropouts,
we could use the following normal defaults: [D(x):A(z)/A(z), [A(x)
A AD(x)1:E(x) /E(z), A(x):=D(z)/-D(z)}. Now we would not conclude
that some particular high-school dropout was employed.

6.7 Bibliographical and Historical Remarks

Almost all interesting applications of Al require some form of nonmonotonic
reasoning because the knowledge that Al systems contain about their
domains is always subject to change and elaboration, yet it is still necessary
for Al systems to reason as best they can with the knowledge they currently
have. Reiter gave an excellent summary of nonmonctonic reasoning and its
applications in AT [Reiter 1987b]. An important, typical application is to
the problem of equipment diagnosis [Reiter 1987a). McCarthy discussed
several applications of one type of nonmonotonic reasoning [MeCarthy
1986].

The closed-world assumption (CWA) is an important convention of
database design. Reiter [Reiter 1978] was the first to describe and prove
several of its properties. Theorem 6.1 is taken from [Shepherdson 1984].
The domain-closure assamption {DCA) and unique-names assumption
(UNA} were discussed by Reiter [Reiter 1980b].

The gualification problem was discussed by McCarthy [MeCarthy 1980].
It often is cited as one of the reasons that a strictly logical approach to
Al will not work, and it has motivated much of the work in nonmonotonic
Teasoning.

Predicate completion of a set of clauses was first described by Clark
[Clark 1978]. Parallel predicate completion suggests itself by analogy
with parallel circumseription. Taxonomic hierarchies are ubiquitous in
Al applications. Several frame-based systems have facilities for property

156 Nonmonotonic Reasoning

inheritance and default reasoning in these hierarchies [Stefik 1986]. Qur use
of the Ab predicate in this connection is based on a suggestion by McCarthy
[McCarthy 1986).

Circumnscription as a method of nonmonotonic reasoning was first
proposed by McCarthy [McCarthy 1980]. Our notation follows that of
Lifschitz [Lifschitz 1985a]. (The alternative form of circumseription—which
says that any alleged strengthening of P by P’ is no real strengthening
because the circuinscription of P already implies P’—was attributed by
Minker and Perlis [Minker 1984] to Reiter.) The circumscription formula is
a formula in second-order logic. Although our treatment of circumscription
in this book is essentially limited to those cases that collapse to first order,
the reader may wanl to look at Enderton’s chapter on second-order logic
[Enderton 1972].

Theorems 6.4 through 6.6 all were developed by Lifschitz; their proofs
are given in {Lifschitz 1987b]; Theorems 6.5 and 6.6 are stated without proof
in [Lifschitz 1985a). That CIRC[A; P) is collapsible to a first-order formula
if all occusrences of P are positive in A follows immediately from results
in Lifschitz [Lifschitz 1986¢], and also was proved in [Lifschitz 1987h].

Etherington, Mercer, and Reiter showed that the circumscription of a
formula having no minimal model is inconsistent, and they also proved a
sufficient condition on the consistency of circumseription {Theorem 6.7)
[Etherington 1985). Theorem 6.8 was developed by Lifschitz {Lifschitz
1986b]. Theorems 6.7 and 6.8 are each special cases of Theorem 6.9, also
developed by Lifschitz [Lifschitz 1986b). Perlis and Minker [Perlis 1986] also
have done work relating properties of circumscription to minimal models.

Parallel circumscription is a natural extension of ordinary circumserip-
tion. Theorem 6.10, developed by Lifschitz [Lifschitz 1986¢, Lifschitz
1987b], often is useful in computing parallel circumscription. Otherwise,
for ordered formulas, parallel circumscription can be computed using The-
orem 6.11. (Ordered formulas and Theorem 6.11 are original here.) Theo-
rem 6.12, developed by Lifschitz [Lifschitz 1987b), is useful for computing
circumscription with variable predicates.

Etherington [Etherington 1986) and Lifschitz [Lifschitz 1986b] indepen-
dently extended Theorem 6.7 to the case of parallel circumscription with
variable predicates. That is, the parallel circumseription of universal the-
ories (even with variable predicates) is consistent if the theory itself is
consistent.

Several authors have becn concerned with the relationship between
circumscription and other nonmonotonic reasoning methods. For example,
there are conditions under which parallel circumscription and the CWA
augment a belief set identically. Lifschitz {Lifschitz 1985b] showed that
the CWA applied to the belief set produces the same effect as does the
paraliel circumseription of all predicates in the belicf set if {1) the CWA
can be applied to a belief set consistently, (2) constant terms in the belief
set name all possible objects in the doinain (the DCA), and (3) different

6.7 Exercises 157

constant terms in the belief set denote different objects in the domain (the
UNA). Gelfond, Przymusinska, and Przymusinski studied the relationships
among various generalizations of the CWA and circurnscription [Gelfond
1986]. Reiter was the first person to show that predicate completion is a
special case of circumscription (using an argument similar to that used in
the proof of Theorem 6.4) [Reiter 1982).

Przymusinski [Przymusinski 1986] proposed a method for deciding
whether or not there is a minimal model of a theory T that also satisfies a
formula ¢; it can be used to answer queries in circumscriptive theories.

Imielinski and Grosof each investigated relationships beiween default
logics and circumscription [Imielinski 1985, Grosof 1984].

Default logic was originally proposed and analyzed in a paper by Reiter
[Reiter 1980a). Our discussion of default theories is based on that paper.
He shows that default logic is not even semidecidable, but describes a
resolution theorem prover that can be used for top-down or backward
scarches for default proofs. Reiter and Criscoulo [Reiter 1983] gave
examples of default-rule formulations of typical commonsense reasoning
problems and showed how to avoid various pitfalls without using nonnormal
defaults.

Other methods of nonmonotonie reasoning also have been proposed.
McDermott and Doyle [McDermott 1980, McDermott 1982a) defined a logic
having a modal operator M. (Modal operators are discussed in Chapter 9.)
In the semantics for such a logic, the formuls MP has value true just
in case P is consistent (with the theory based om A). Any derivations
of MP or its consequences are nonmonotonic because the meaning of M
depends globally on the theory. If we add another formula to A, MP may
no longer be consistent. With a somewhat different application in mind,
Moore [Moore 1985b] proposed a variant, which he called autoepistemic
logic, and ecompared it with McDermott and Doyle’s nonmonotonic logic.
Konolige [Konolige 1987] analyzed the connections between default theories
and antoepistemic logic.

Several additional papers appear in the proceedings of a workshop on
nonmonotonic reasoning {Nonmenotonic 1984).

Exercises

1. Idempotence. We denote the CWA augmentation of A by CWA[A].
Prove that

CWA[CWA[A]] = CWA[A]

{Assume CWA[A] is consistent.)

158

Nonmonotonic Reasoning

. Insensitivity to negative clauses. Suppose A is Horn and consistent.

Show that deleting a negative clause (i.e., one without any positive
literals) from A does not change the CWA augmentation of A.

. Inconsistencies. Prove that, if a consistent A contains only Horn

clanses and is inconsistent with ~L; A =Ly {where L; and Ly are
positive literals), then either A A=lq or A A =Ly is inconsistent also.

. Even and odd. Compute the completion of EVEN in the conjunction of

the following formulas:

vz ODD{x} A x>0 => EVEN(Succ(x)}
vx ODD(x) A x>0 = EVEN(Pred{x))

. Integers. Compute the completion of INT in INT(0) A (INT{(x) =

INT (Succ(x))).

. Delimited predicate completion. Discuss how delimited predicate com-

pletion might produce an inconsistent augmentation.

. Completion. Compute the completion of P in the following clauses:

Q1{x) A §Q2(x) = P(F(x))
Q3(x) = P{G(x))

. 15 there a Q that is not ¢ P? Express in words what the effect would

be of circumscribing Qin P < Q.

. Pumallel, Compute CIRC[(vx Q(x) = P1(x) v P2(x))P1,P2].
10.

Knights and Knaves. Let A be the conjunction of the following
formulas:

¥x KNIGHT(x) => PERSON{(x)

¥x KNAVE(x) = PERSON(x)

vz KNAVE(x) = LIAR(x}

3x -LIAR{x) A -KNAVE(x)

LIAR(MORK}

KNAVE (BORK)

a. Compute CIRC[A; LIAR].
b. Compute CTRC[A; LIAR,KNAVE].

8.7 Exercises 159

~Ab(A) = {(GAR=>T)

§ ———

R ——

Figure 8.2 An AND gate.

11, AND gate. The AND gate, A, shown in Figure 6.2, is described by

the following formula:
-4b(A) = (Q AR =)

gUMess A' is abnormal, Q and R imply U. Q denoies the proposition
input 1 is on;” R denotes the proposition “input 2 is on;” U denotes
the proposition “the output is on.”)

a. Snpp?se, in fact, that Q, k, and U are true. Use the circumseription
of Ab in this theory to prove that nothing is abnormal. The “theory”
in this case is :

QARAT A (-4b(A) = (Q AR = U))
b. Suppose now, instead, that Q and R are true, but U is false. Use the

circumscription of 4b in this theory to show that the onily abnormnal
thing is A.

12. Both P and). Let A comsist of these two formulas:

vx R(x) = P(x)
vx R{x) = Qo)
Show how to use circumscription to assert that the only objects that

satisfy both P and [also satisfy R. Hint: Use {vx (P(x) A Q{x}) =
Ab(x)) and minimize Ab with P and Q varizble.

