Matematica Discreta- Informatica- N.O. corso B- appello del 30 /01/07

- 1. Vericare che $\forall n \geq 0$, risulta: 6 | $2n^3 + 10n$.
- 2.a) Verificare che $\forall a, b \in \mathbb{Z}$ si ha: $8 \mid 6a + 2b \Leftrightarrow a \equiv b \pmod{4}$
- b) Utilizzando il teorema di Eulero-Fermat, dire se $35^{58} \equiv 1 \pmod{24}$.
- 3. Scrivere la partizione su $X = \{n \in \mathbb{N} \mid 1 \le n \le 10\}$, determinata dalla relazione di equivalenza associata all'applicazione $f: X \to \{0, 1, 2, 3, 4\}$ cosi'definita: $\forall x \in X \ f(x) = r \ \text{t.c.} \ x \equiv r(\text{mod } 5)$.
- 4. a)Dire se il polinomio $p(x) = 3x^4 + 2x^3 + 5x + 1$ e' riducibile o no sul campo \mathbb{Q} dei razionali.
 - b) Fattorizzare in $\mathbb{Z}_5[x]$ il polinomio $p(x) = \overline{2}x^5 x^4 + \overline{3}x^3 \overline{3}x + \overline{4}$.
- 5. Dato il gruppo (\mathbb{Z}_{11}^* , •),
 - a) verificare che $[2]_{11}$ e' un suo generatore e disegnare il diagramma di Hasse del reticolo dei sottogruppi di $(\mathbb{Z}_{11}^*, \bullet)$, senza pero'determinarli.
 - b) verificare che $H = \{[1]_{11}, [3]_{11}, [4]_{11}, [5]_{11}, [9]_{11}\}$ e' un sottogruppo di $(\mathbb{Z}_{11}^*, \bullet)$ e giustificare se (H, \bullet) puo' essere o no isomorfo al gruppo $(\mathbb{Z}_5, +)$.
 - c) Dato il morfismo di gruppi $f: \mathbb{Z}_{10} \to H$ tale che $f([1]_{10}) = [3]_{11}$, determinare il sottogruppo $f(\langle [2]_{10} \rangle)$.
- 6. Dati gli insiemi $A = \{1, 3, 4, 6, 8, 24\}$ e $B = \{1, 2, 4, 8, 12, 24\}$, studiare i reticoli (A, |) e (B, |). (dire cioe' se sono limitati, distributivi, complementati). Inoltre giustificare se sono o no sottoreticoli del reticolo $(D_{24}, |)$.